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ABSTRACT

We present DAWN (Diffusion is All We Need for robot control), a unified
diffusion-based framework for language-conditioned robotic manipulation that
bridges high-level motion intent and low-level robot action via structured pixel
motion representation. In DAWN, both the high-level and low-level controllers
are modeled as diffusion processes, yielding a fully trainable, end-to-end system
with interpretable intermediate motion abstractions. DAWN achieves state-of-the-
art results on the challenging CALVIN benchmark, demonstrating strong multi-
task performance, and further validates its effectiveness on MetaWorld. Despite
the substantial domain gap between simulation and reality and limited real-world
data, we demonstrate reliable real-world transfer with only minimal finetuning, il-
lustrating the practical viability of diffusion-based motion abstractions for robotic
control. Our results show the effectiveness of combining diffusion modeling with
motion-centric representations as a strong baseline for scalable and robust robot
learning. Project page: https://nerol342.github.io/DAWN/.
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Figure 1: Overview of DAWN with two major diffusion modules. First, observations are encoded into condi-

tional embeddings; Based on that, a latent diffusion Motion Director generates a pixel motion representation,
which the diffusion policy Action Expert uses to create robot actions.

1 INTRODUCTION

Multi-stage pixel or point tracking based methods have recently emerged as a promising direc-
tion for robot manipulation, offering interpretable intermediate pixel motion and modular con-
trol (Yuan et al., 2024a; Gao et al., 2024; Xu et al., 2024; Bharadhwaj et al., 2024b;a; Ranasinghe
et al., 2025). However, despite their promise, approaches such as Im2Flow2Act (Xu et al., 2024),
ATM (Wen et al., 2023), and LangToMo (Ranasinghe et al., 2025) still fall short of state-of-the-art
vision-language action (VLA) models (Black et al., 2024a; Intelligence et al., 2025) and latent fea-
ture—based hierarchical methods (Hu et al., 2024; Nvidia et al., 2025) on established benchmarks.

*Equal contribution.
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We argue that this performance gap does not arise from limitations in the two-stage intermediate
pixel-motion based framework itself. The high-level motion generator in these frameworks does not
fully reflect recent advances in visual generative modeling (Ge et al., 2022; Kumari et al., 2023;
Zhang et al., 2022; Ren et al., 2022; Chen et al., 2023), while the low-level controllers have not
leveraged recent progress in diffusion-based action policies (Janner et al., 2022; Du et al., 2023a;
Chi et al., 2023; Shridhar et al., 2024; Li et al., 2024a) in an optimal way.

To address these limitations, we introduce a two-stage diffusion-based visuomotor framework in
which both the high-level and low-level controllers are instantiated as diffusion models and glued
by explicit pixel motions as illustrated in Figure 1. The high-level motion director, which is a
latent diffusion module, takes current (multiview) visual observations and language instruction, and
predicts desired dense pixel motion from a third-person view. This pixel motion could be regarded
as a structured intermediate representation of desired scene dynamics to accomplish the language
instruction. These pixel motion are then translated into executable actions through a diffusion-based
policy head. We highlight how intermediate pixel motion is grounded on visual inputs, endowing
the intermediate representations with interpretability. Therein, we introduce Diffusion is All We
Need for robot control (DAWN), which bridges the strengths of hierarchical motion decomposition
and end-to-end visuomotor agents, while maintaining interpretability and modularity.

Our framework illustrated in Figure 1 builds upon insights from prior hierarchical visuomotor ap-
proaches. VPP (Hu et al., 2024) employs a video diffusion model to extract predictive feature
embeddings, which subsequently condition a downstream action policy. However, it operates in
RGB space (with no motion specific representation) and uses the video diffusion model as a feature
extractor as opposed to iterative denoising of motion features. LangToMo (Ranasinghe et al., 2025)
predicts pixel-space motion trajectories from language instructions, but its high-level motion director
uses pixel-level diffusion, limiting the resolution of the generated motion representation and training
scalability. Its low-level controller is based on weaker ViT architectures or hand-crafted heuristics.
In contrast, DAWN utilizes an efficient pretrained latent diffusion model for motion generation with
iterative denoising during inference, and a strong diffusion-based action expert, thus benefiting from
powerful vision and language models.

We evaluate our method on two challenging simulation benchmarks—CALVIN (Mees et al., 2022)
and MetaWorld (Yu et al., 2019), as well as across real-world environments with only very limited
in-domain training data.

Our results demonstrate that, despite using limited data and substantially smaller model capacity,
our method can match or even surpass state-of-the-art VLA models by leveraging explicit structured
pixel motion and the strengths of diverse pretrained models, highlighting its high data efficiency.

Our key contributions are as follows:

1. We propose DAWN, a two-stage diffusion-based framework that generates structured intermedi-
ate pixel motion as an efficient language-conditioned visuomotor policy.

2. Despite relying on limited data and a substantially smaller model capacity, we achieve competi-
tive or even state-of-the-art performance on CALVIN, MetaWorld, and real-world benchmarks.

3. Our approach is explicitly designed to leverage pretrained vision and language models, enabling
highly data-efficient transfer across domains, while providing interpretability and modularity.

2 RELATED WORK

Pixel Motion for Robot Control: Several prior works explore pixel trajectories or optical flow
as motion representations (Bharadhwaj et al., 2024b;a; Hu et al., 2024; Ranasinghe et al., 2025).
These methods capture the displacement of pixels between consecutive frames, providing a dense
and local description of motion that is universal and often embodiment-agnostic. Recent advances
have leveraged these representations to enable scalable robot learning and zero-shot skill trans-
fer. For instance, LangToMo (Ranasinghe et al., 2025) introduces a dual-system framework that
uses language-conditioned pixel motion forecasts as an intermediate representation, allowing robot
control to be learned from web-scale video-caption data without requiring specific robot action an-
notations. Similarly, General Flow (Yuan et al., 2024a) proposes a language-conditioned 3D flow



prediction model trained on large-scale human videos and treats 3D flow as a foundational affor-
dance, providing a scalable, universal language for describing manipulation.

Other works focus on using pixel motion for planning and policy learning. FLIP (Gao et al.,
2024) utilizes a flow-centric generative planning model to synthesize long-horizon plans from
language-annotated videos, guiding low-level policies. Im2Flow2Act (Xu et al., 2024) and
Track2Act (Bharadhwaj et al., 2024b) both use point or object flow as a cross-domain interface,
bridging the gap between human videos, simulated data, and real-world robot execution to achieve
zero-shot manipulation. Finally, Gen2Act (Bharadhwaj et al., 2024a) takes a generative approach,
first imagining a video of future motion in image pixel space and then conditioning a robot policy
on the generated video to enable generalizable manipulation.

Vision-Language-Action Models with Pixel-related Representations: Vision-language-action
models have emerged as a powerful paradigm for language-conditioned robot control (Brohan et al.,
2023; Brohan & et al., 2023; Bahl et al., 2022; Padalkar & et al., 2023; Reed et al., 2022; Wu et al.,
2023; Driess et al., 2023; Kim et al., 2024; Zheng et al., 2024; Zawalski et al., 2024; Sudhakar
et al., 2024; Jeong et al., 2025; Yang et al., 2025). Leveraging large-scale training with web-scale
vision-language data, these models increasingly focus on improving generalization and data effi-
ciency. DVD (Chen et al., 2021) uses diverse “in-the-wild” human videos to teach reward functions
and enables zero-shot transfer to new environments. Other approaches focus on learning from pas-
sive observation, as seen in (Ko et al., 2023), who developed a policy that learns from “actionless”
videos by inferring actions from dense correspondences between generated future frames. GR-1 (Wu
et al., 2023) is a GPT-style transformer policy that benefits from large-scale video pre-training. 3D-
VLA (Zhen et al., 2024) proposes a world model that integrates 3D perception and reasoning to
enhance planning capabilities. These advances have been supported by initiatives like Octo (Octo
Model Team et al., 2024), an open-source generalist policy trained on the vast Open X-Embodiment
dataset (O’Neill et al., 2024), paving the way for more reproducible and widely usable models.

Pixel-related representations are also found useful in robot manipulation. GENIMA (Shridhar et al.,
2024) fine-tunes a diffusion model to inpaint markers on visual observations, which could be de-
coded into robot actions. LLaRA (Li et al., 2024b) presents the robot action in text-based image pixel
coordinates and formats the robot policy into a conversation style to benefit from a pretrained large
VLM. This enables an efficient transfer from a general VLM into VLA. Similarly, RoboPoint (Yuan
et al., 2024b), LLARVA (Niu et al., 2024), TraceVLA (Zheng et al., 2024) and Magma (Yang et al.,
2025) all take advantage of different kinds of image coordinate-based representations.

3 METHOD

3.1 PRELIMINARIES: DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) are powerful gen-
erative models that synthesize data by iteratively denoising noise-corrupted inputs to approximate
the target data distribution. The process involves a forward step that gradually perturbs real data
with noise through a Markov chain, and a reverse step in which a neural network parameterizes
Gaussian transitions to progressively remove noise, eventually generating realistic samples from a
simple distribution such as a standard Gaussian. These models have shown remarkable success in
image generation and broader data generation tasks. To improve scalability and efficiency for im-
age generation, latent diffusion models (Rombach et al., 2022) operate in a compressed latent space
rather than raw pixel space, significantly reducing computational demands while preserving fidelity.

Diffusion-based approaches have also been adapted for robot learning, where policy learning can be
framed as a sequence generation problem. Diffusion Policy (Chi et al., 2023), in particular, addresses
the challenge of visuomotor control by generating action sequences conditioned on both visual and
low-dimensional states.

3.2 PROBLEM FORMULATION AND DAWN OVERVIEW

We study the topic of language-instructed visuomotor control, where the goal is to build a policy that
takes both visual observations and natural language instructions from the environment to generate
robot actions for control, using behavior cloning (i.e., supervised learning).
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Figure 3: Architecture of Action Expert. The model
encodes predicted pixel motion, visual observations,
language instruction, and robot state into multimodal
features. These inputs condition the denoising pro-
cess, which iteratively refines noisy actions into exe-
cutable robot trajectories.

Our approach, DAWN, combines the strengths of two complementary diffusion models: a latent
image diffusion model for pixel-level motion generation, referred to as Motion Director, and a dif-
fusion transformer for fine-grained action sequence generation, referred to as Action Expert. These
two models interact through explicit pixel-motion representations. At a higher level, Motion Direc-
tor conditions on multi-view images and the language instruction to iteratively generate task-aligned
pixel motions, grounded to one of the input views as illustrated at Figure 2. At the lower level, Ac-
tion Expert takes the generated pixel motion along with additional inputs to produce the final robot
action sequence as illustrated at Figure 3. We highlight how our pixel-motions are grounded to an
input view, endowing our intermediate representations with interpretability.

3.3 MOTION DIRECTOR: LANGUAGE-TO-MOTION GENERATION

Consider two videos I, G € RT*HxWXC capturing the same robot demonstration from different
camera views, each consisting of 7" frames of height H, width W, and C' channels, along with the
corresponding language instruction L. For example, I could be the video from a static third-person
view, and G could be captured from the camera above the gripper. Let I;, G; denote the ¢-th frame
from the corresponding views. We define the pixel motion from I, to I;4x as F; j = [u, v], where
u,v € REXW represent amount of movement of each pixel between I, and I, in the horizontal
and vertical directions, respectively. To take advantage of pretrained models, we further encode this
motion into a three-channel image ¥’ ,, = [u, v, (v + v)/2].

The goal of Motion Director is to estimate F’; j, using only current visual input I, G and instruction
L. Our Motion Director builds on a pretrained latent diffusion model for RGB image generation,
comprising a U-Net denoiser Uy, a text encoder T}, and pretrained VAE encoder—decoder pair
(Vame, Vap). We also incorporate a vision encoder E); to extract embeddings from alternative
camera views.

At the inference time, we first draw a Gaussian noise tensor Ny, and concatenate it with the
latent encoding of the current frame Vj;g(I;), forming a noisy latent representation Oy, =
[Natn, Vare ()], where n is the total number of denoising steps we plan to execute. Note that
the current frame latent encoding Vs (I;) does not undergo any form of corruption, as this is a
conditioning signal. The U-Net Uj; then denoises Oz, and outputs a less noisy latent tensor
Npsn—1 under the conditioning of the language embedding T (L), visual embedding of the al-
ternative view Ej;(Gy), and the temporal offset k. All conditioning tokens are concatenated and
injected into the U-Net’s cross-attention layers at each denoising step. The denoised latent tensor
will be concatenated again with the VAE encoded visual inputs to form the input for the next de-
noising step Oas.n—1 = [Nas,n—1, Vare(I:)]. For an arbitrary denoising step ¢, the process can be



presented as Equation (3) where ¢; is the denoising timestamp and [...] stands for concatenation.

Owi = [Natn, Ve (1) (D
Cuy = [Em(Gy), Tar(L), K] )
Nurici = Upm (O, Coars ti) 3)

After n iterations, the denoised latent tensor N7 o is decoded by Vi, p into a three-channel image,
which ideally matches the ground-truth motion F/; .

During training, we update only the U-Net denoiser Uj,, while keeping all other modules frozen.
The ground-truth pixel motion corresponding to frame I, is obtained using the optical flow model
RAFT (Teed & Deng, 2020) since we have access to future frames during training (i.e., using frames
I; and I, as input to RAFT), and subsequently projected into latent space through the VAE en-
coder Vy/g.

3.4 ACTION EXPERT: DIFFUSION-BASED POLICY

Our Action Expert is responsible for translating pixel motions into low-level robot actions, condi-
tioned on visual observations, robot states, and language instructions. To achieve this, motivated by
prior diffusion based policies (Chi et al., 2023), we construct a transformer based Enhanced Diffu-
sion Policy, which generates action sequences by progressively denoising noisy action representa-
tions under multimodal conditions. This design enables the policy to capture complex dependencies
across modalities while producing coherent actions temporally.

The architecture consists of four key components: (1) a shared visual encoder V4 that encodes both
the pixel motion output from Motion Director and the current visual observations, (2) a text encoder
T4 that embeds the language instruction, (3) a state encoder S4 that processes low-dimensional
robot states through a two-layer MLP, and (4) a denoising transformer U4 that generates action
sequences. We initialize U4 and S4 from scratch to allow adaptation to the target task, while
keeping the pretrained V4 and T4 frozen to benefit from strong pretrained visual and language
representations.

During inference, the pixel motion predicted by Motion Director, together with the visual inputs, lan-
guage instruction, and robot states, are each processed by their corresponding encoder and projected
into token embeddings. These context tokens are concatenated to form the conditioning sequence,
which is injected into all transformer blocks of the denoising transformer Uy4 via cross-attention,
following the same mechanism as in Motion Director. Action generation begins from a noisy ac-
tion chunk with length / sampled from a Gaussian prior, which is iteratively denoised by U 4 into a
coherent sequence of executable robot actions.

3.5 DAWN TRAINING AND INFERENCE

In summary, both Motion Director and Action Expert are trained with a mean squared error noise
estimation loss. While Motion Director operates in the latent image space to predict pixel motions,
Action Expert focuses on predicting action chunks in the robot’s action space.

At inference time, all the observations are first encoded into condition representations. Conditioned
on that, Motion Director then iteratively generates a single pixel motion image , which serves as
input to Action Expert. Considering this pixel motion and the other representations, Action Expert
finally produces a sequence of executable robot actions through a similar recurrent denoising pro-
cess. Once these actions are executed, the system repeats the process with the updated observations,
thereby forming a closed-loop control pipeline.

This hierarchical design leverages the strengths of large pretrained models in both computer vision
and robotics, while maintaining modularity and interpretability through the explicit use of pixel
motion as an intermediate representation. One advantage of this modularity is that the two diffusion
models can be trained in parallel using the optical flow between two images as the groundtruth
pixel motion. Two modules could be upgraded independently, enabling flexible integration of future
advances in vision or control. After that, Action Expert could optionally be further fine-tuned on the
actual pixel motions generated by Motion Director for a better performance.



Table 1: CALVIN Evaluation (no external robotic data): Results reported for zero-shot long-horizon evalu-
ation on the Calvin ABC—D benchmark, where the agent is asked to complete five chained tasks sequentially
based on instructions. All methods are trained only on the CALVIN dataset without any external data.

i*" Task Success Rate

Method i 3 3 3 3 Avg. Len 1
Diffusion Policy (Chi et al., 2023) 0.402 0.123 0.026 0.008 0.00 0.56
Robo-Flamingo (Li et al., 2023) 0.824 0.619 0.466 0.331 0.235 247
RoboUniview (Yang et al., 2025) 0.942 0.842 0.734 0.622 0.507 3.65
Seer (Tian et al., 2024) 0.930 0.824 0.723 0.626 0.533 3.64
Seer-Large (Tian et al., 2024) 0.927 0.846 0.761 0.689 0.603 3.83
VPP (Hu et al., 2024) 0.955 0.879 0.784 0.714 0.604 3.93
Enhanced Diffusion Policy (ours) 0.824 0.672 0.528 0.408 0.352 2.78
DAWN (ours) 0.981 0.913 0.788 0.712 0.606 4.00

Table 2: CALVIN Evaluation with external robotic data: Zero-shot long-horizon evaluation on the Calvin
ABC—D benchmark where agent is asked to complete five chained tasks sequentially based on instructions.

i*" Task Success Rate

Method Additional Data 1 3 3 3 3 Avg. Len 1
GR-1 (Wu et al., 2023) Ego4D 0.854 0.712 0.596 0.497 0.401 3.06
Vidman (Wen et al., 2024) OpenX subsets 0.915 0.764 0.682 0.592 0.467 3.42
LTM (Ranasinghe et al., 2025) OpenX subsets 0.971 0.824 0.728 0.672 0.606 3.81
Seer (Tian et al., 2024) DROID 0.944 0.872 0.799 0.722 0.643 3.98
Seer-Large (Tian et al., 2024) DROID 0.963 0.916 0.861 0.803 0.740 4.28
VPP (Hu et al., 2024) Multiple sources 0.965 0.909 0.866 0.820  0.769 4.33
DreamVLA (Zhang et al., 2025) DROID 0.982 0.946 0.895 0.834  0.781 4.44
DAWN (ours) DROID 0.978 0.916 0.813 0.752 0.641 4.10

To the best of our knowledge, this is the first work to adapt a pretrained latent diffusion model for
dense pixel motion generation and use the pixel motion to guide a diffusion policy for visuomotor
control under fully learnable settings.

4 EXPERIMENTS

We evaluate our framework on two challenging simulation benchmarks—CALVIN (Mees et al.,
2022) and MetaWorld (Yu et al., 2019), as well as across real-world environments involving diverse
robotic manipulation tasks. In this section, we first introduce our experimental setup, followed by
evaluations on the three selected robotics environments, and finally ablation studies.

4.1 IMPLEMENTATION DETAILS

Our DAWN comprises two components, Motion Director and Action Expert. We initialize our
Motion Director from a pretrained latent diffusion model from (Rombach et al., 2022; 2025) that
has been trained on large-scale image-text datasets. The additional U-Net weights we use for our
additional visual conditioning are zero-initialized to ensure that the pretrained network behavior is
preserved at the beginning of training, and the model can gradually adapt to the additional input
modality. We encode the language instruction using a pretrained CLIP text encoder, and extract
gripper view visual tokens using a CLIP ViT encoder. During the inference, we use 25 diffusion
steps to generate the final pixel motion prediction.

Our Action Expert which contains a diffusion policy conditioned on visual, textual, and robotic state
modalities uses different encoders for each input. The visual encoder is a pretrained ConvNeXt-S
variant of DINOv3 (Siméoni et al., 2025), and the text encoder is a T5-small pretrained model. The
state encoder and the diffusion policy head are randomly initialized.



Table 3: MetaWorld task success rate: Our DAWN achieves state-of-the-art performance on MetaWorld.

5 3 S & g g

§ 5 2 &£ § § H § ¢ H
Method ] ] < 5 5 5 & & < < & o
BC-Scratch (Nair et al., 2022) 213 36.0 0.0 0.0 347 12.0 18.7 17.3 373 0.0 1.3 16.2
BC-R3M (Nair et al., 2022) 13 58.7 0.0 0.0 36.0 4.0 18.7 22.7 28.0 0.0 0.0 154
Diffusion Policy 453 453 8.0 0.0 40.0 18.7 22.7 58.7 213 4.0 1.3 24.1
UniPi (Du et al., 2023b) (With Replan) 0.0 36.0 0.0 0.0 6.7 0.0 4.0 9.3 13.3 4.0 0.0 6.1
Im2Flow2Act (Xu et al., 2024) 0.0 0.0 0.0 4.0 6.3 0.0 73 4.7 0.0 0.0 0.0 2.0
ATM (Wen et al., 2023) 753 90.7 24.0 16.3 713 76.7 50.0 62.7 923 43 20 52.0
AVDC (Ko et al., 2023) (Flow) 0.0 0.0 0.0 0.0 1.3 40.0 42.7 0.0 66.7 0.0 0.0 13.7
AVDC (Ko et al., 2023) (Default) 72.0 89.3 373 18.7 60.0 24.0 533 24.0 81.3 8.0 6.7 43.1
LTM (Ranasinghe et al., 2025) 77.3 95.0 39.0 20.3 82.7 84.3 523 68.3 98.0 10.3 7.7 57.7
DAWN (ours) 94.7 97.3 42.0 24.7 92.0 91.7 76.3 79.0 98.0 127 10.7 65.4

4.2 CALVIN EXPERIMENTS

We first evaluate our DAWN on the CALVIN benchmark (Mees et al., 2022). This simulated bench-
mark measures the long-horizon capability of robotic manipulation tasks. We select this environment
for the challenging nature of its tasks, requiring semantic understanding and 3D awareness.

Dataset: This benchmark provides a dataset containing 4 different splits, A, B, C, and D, each
containing demonstrations from distinct environments. Across scenes, the dataset contains 34 tasks,
with a total of 24k demonstrations. We focus on the most challenging ABC—D task setting, where
the model is trained on the A, B, and C environments and then evaluated in the unseen D environ-
ment. Several prior works also report results using pretraining on external data, including (Hu et al.,
2024; Ranasinghe et al., 2025; Zhang et al., 2025; Gu et al., 2023). We train our model under this
setting as well, where we use the DROID dataset (Khazatsky et al., 2024) for our pretraining.

Evaluation: We follow standard evaluation protocol from (Hu et al., 2024), which evaluates a given
policy on 1000 episodes each containing 5 continuous tasks (i.e. task ¢ starts from the end state of
task ¢ — 1, which is often different to what is encountered in demonstrations within the training data).
For each task, at most 360 action steps are performed unless the task is successfully completed prior
to that. The success rate for each consecutive task is averaged across the 1000 episodes and reported.
Considering the 5 continuous tasks as a sequences, the average number of tasks completed by the

policy (i.e. average length) is also reported.

Results: We report results under two training settings, first without using any external robotic
demonstration data in Table 1 and second with external robotic demonstration data (DROID) in
Table 2. Since we follow evaluation protocol identical to (Hu et al., 2024; Ranasinghe et al., 2025),
baseline results in our tables are directly borrowed from these prior works.

In Table 1, our DAWN achieves state-of-the-art results, highlighting the promise of pixel-motion
based representations for complex robotic manipulation tasks. We also report results for two ablated
variants of our method, containing only the low-level Action Expert. These results highlight the
clear impact of pixel motions in achieving the strong results of our overall DAWN framework. Two

example rollouts are presented in Figure A.1.

In the case of using external robotic demonstration data, direct comparison to prior work (where
different approaches use different pretraining data) is less straightforward. We report results for our
DAWN that is trained jointly on the DROID dataset and CALVIN ABC—D split. Our DAWN
outperforms several recent works and performs competitively against SOTA methods VPP (Hu
et al., 2024) and DreamVLA (Zhang et al., 2025). In Table 2, VPP benefits from significantly
more videos (including 193k human manipulation trajectories, 179k robot manipulation trajecto-
ries, CALVIN, MetaWorld, and additional real-world datasets) in its pretraining compared to ours.
Similarly, DreamVLA was first pretrained on a language-free split of the CALVIN and the full

DROID dataset.

Overall, our DAWN achieves state-of-the-art performance on CALVIN benchmark, demonstrating
the scalability as well as strong data efficiency of intermediate pixel-motion based VLA approaches.



Table 4: Real-world single lift-and-place evaluation. For each task, we evaluate 20 episodes with random
initialization and report number of episodes of the following four cases: (i) successful lifts of the instructed
object, (ii) successful placements of the instructed object (column Success, higher is better), (iii) lifts of an
incorrect object, and (iv) placements of an incorrect object (column Wrong Obj.). Note that (iii) and (iv) are
still classified as failures, though they differ from complete failures to grasp or place the object. We include
these cases to provide a clearer understanding of the failure patterns.

Apple Avocado Banana Grape Kiwi Orange

Success T Wrong Obj. | | SuccessT  Wrong Obj. | | Success?  WrongObj. | | Success?  Wrong Obj. | | Successt  WrongObj. | | Success?  Wrong Obj. |

(i) (ii) (i) —+(iv) (i) (i) (iii)—(iv) (i) (ii) (iii) = (iv) (i) (i) (i) = (iv) (i)—+(ii) (i) =+ (iv) (i) (i) (iii)—(iv)
Enhanced Diffusion Policy 54 98 66 64 54 64 43 86 55 65 44 87
o (Black et al., 2024b) 109 959 66 1210 543 116 85 108 53 12512 87 111
DAWN 12510 22 1010 11 97 00 1510 1-0 1311 00 11-11 252
VPP (Hu et al., 2024) 1614 252 1515 250 1514 00 1717 1-0 1515 250 1614 050
DAWN* 1919 00 2019 00 1716 00 1919 00 1716 252 1816 00

Table 5: Ablation study on CALVIN dataset.

Setting | Avg. Length
(a) Pixel Motion vs RGB Goal

None 2.78
RGB Goal 3.21
Pixel Motion w/o pretrained 3.42
Pixel Motion 4.00

(b) Gripper View

VPP w/o gripper view 3.58
DAWN w/o Gripper view 3.74
DAWN w/ Gripper View 4.00

. . (c) # of Diffusion steps of Motion Director
Figure 4: Real-world environment examples. a) Our f Dift ps of

single-arm environment includes a robot arm and two cam- %O ;gg
eras. They are stereo RGB cameras, but we only use one 25 4.00
RGB view from each camera. b) The RGB image from the 40 3.95

static camera. ¢) The RGB image from the gripper camera.

4.3 META-WORLD EXPERIMENTS

We next evaluate DAWN on the MetaWorld (Yu et al., 2019) simulated environment containing
a Sawyer robot arm. We focus on 11 challenging tasks constructed following (Ko et al., 2023;
Ranasinghe et al., 2025) since the original benchmark is not language conditioned. We select this
environment-tasks setting to enable direct comparison to closely related prior works (Ko et al., 2023;
Wen et al., 2023; Xu et al., 2024; Ranasinghe et al., 2025) that also leverage pixel or point trajectories
for robot manipulation tasks.

Dataset: We use the training split from (Ko et al., 2023; Ranasinghe et al., 2025) containing 165
actionless videos for Motion Director training and 220 task demonstrations across the 11 tasks for
Action Expert training. All baseline experiments and results are identical to those reported in prior
works AVDC (Ko et al., 2023) and LTM (Ranasinghe et al., 2025). The baselines “BC” refer to
behaviour cloning, with BC-Scratch containing a ResNet initialized from scratch and BC-R3M using
a ResNet initialized from R3M (Nair et al., 2022). All baselines are trained as described in (Ko et al.,
2023; Ranasinghe et al., 2025).

Results: We report these results in Table 3. Our approach achieves clear performance improvements
compared to prior works on this challenging benchmark. We particularly emphasize the improved
semantic understanding of our DAWN framework: notice how DAWN achieves significantly bet-
ter performance on visually similar but semantically dissimilar task pairs such as open—door vs
close—door. We attribute this to our efficient latent diffusion formulation that enables scalable
language-video pretraining, which in turn endows our model with stronger language understanding.
We also highlight the improved performance in tasks such as basketball and assembly, which
we attribute to our action-expert design choices that enable better robot state awareness.

We take these results as clear indication to how our design choices elevate the capabilities of inter-
mediate pixel motion based VLA approaches, establishing the promise of this direction.
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Figure 5: Real world rollout examples. Given a task of “lift the apple”, the first row shows the rollout
image sequence by 7o with LoRA finetuned, which lifts the wrong object, kiwi. The second row shows a
successful episode by our method in the same environment setting, and the third row is the visualization of the
corresponding pixel motions predicted by Motion Director.

4.4 REAL-WORLD SINGLE-ARM MANIPULATION

We set up our single-arm environment with a 7-DoF xArm?7 robot arm and two RGB cameras: one
providing a fixed third-person view from the right side of the arm, and the other mounted above the
gripper (see Figure 4). A dataset of one thousand episodes is then collected, comprising lift-and-
place manipulations involving six types of toys and a container.

Implementation: We compare our approach against three strong baselines. The first is our mod-
ification of Diffusion Policy (Chi et al., 2023), Enhanced Diffusion Policy, which is identical to
our Action Expert but without pixel motion from a Motion Director. This model is pretrained on
CALVIN ABC dataset. The second baseline is mg (Black et al., 2024b), where we initialize from
the my base model and apply Low-Rank Adaptation (LoRA) (Hu et al., 2022). The third is VPP Hu
et al. (2024), initialized from their official pretrained checkpoint. We also build a variant of DAWN
(DAWN¥*) that can benefit from the VPP pretrained checkpoint (details in Section C) to enable fair
comparison with VPP. All methods are fine-tuned on our collected real-world dataset for 100k steps.
The task is highly challenging for the policy to learn, as a total of only 1k episodes across 12 tasks
provides very limited training data.

Evaluation: We evaluate all methods using the lift-and-place task pair with different objects, where
the robot is instructed to lift a specified object and place it into a container. We record the number
of episodes in which the robot: (i) successfully lifts the correct object, (ii) successfully places the
correct object, (iii) lifts an incorrect object at the end with 500 max steps, and (iv) places the incorrect
object from the previous lifting. Note that (iii) and (iv) are still classified as failures, though they
differ from complete failures to grasp or place the object. We include these cases to provide a clearer
understanding of the failure patterns. Each episode begins from a randomly initialized environment,
and we run 20 episodes per task in total.

Results in Table 4 demonstrate that our method achieves higher success in lifting and placing the
correct object compared to the baselines, despite using far fewer parameters than 7. In contrast,
without the pixel motion provided by Motion Director, our Enhanced Diffusion Policy baseline
frequently fails by lifting the wrong object or completely failing the task. Compared to 7y, DAWN
exhibits better semantic awareness, lifting the correct object more often. Figure 5 shows an example
episode where m fails to follow the instruction and lifts the wrong object, and DAWN can lift the
correct object. DAWN is both more accurate and more parameter-efficient than the baselines in this
set of challenging tasks.

The VPP baseline requires significantly more pretraining than our setup to perform well on our
real-world tasks (see Section C). Interestingly, our similarly trained DAWN#* variant consistently
outperforms VPP, demonstrating that structured pixel motion provides complementary benefits and
can further strengthen even strong two-stage diffusion based methods such as VPP.



“arrange sofa cushions” “chair push and place”

Frame Order

"
g
Il
Vo,

A

Figure 6: Galaxea pixel motion prediction examples. The first column shows the one test image sequence
given the task of “arrange sofa cushions”. The second column shows the test image sequence given the task
of “chair push and place”. Each group shows the original head-camera observation and the visualizations of
corresponding pixel motions predicted by Motion Director.

4.5 BIMANUAL MANIPULATION

We further extend our framework in a more challenging bimanual setting using the Galaxea R1-Lite.
The setup includes two 7-DoF arms with a gripper, a head static camera, and two wrist-mounted
cameras. Similarly, though the cameras are stereo cameras, we only use a single RGB frame from
each camera for our experiments.

Implementation and Evaluation: We train our model on the subset of Galaxea Open-World
Dataset Jiang et al. (2025). The subset contains more than 100 hours of real-world demos, cov-
ering nine different types of challenging bimanual tasks in seven real-world environments.

We report the mean squared error (MSE) of pre-

dicted joint actions on a test set of 300 episodes. Method | MSE}
We compare our proposed model against the base- Enhanced Diffusion Policy | 0.128
line Enhanced Diffusion Policy (without pixel mo- Ours 0.117

tion from Motion Director), as shown in Table 6.
Results show that our approach achieves consistently  Table 6: Bimanual manipulation results. Mean
lower MSE, indicating that structured pixel motion squared error (MSE) of action prediction on the
improves the accuracy of action prediction even in test set. Our approach achieves lower error com-
the more complex bimanual setting. Figure 6 shows pared to the baseline.

two example samples from the test set where DAWN can predict the correct pixel motion corre-
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sponding to the given observations. These findings suggest that the benefits of our two-stage frame-
work generalize beyond single-arm tasks and extend to multi-arm coordination scenarios.

4.6 ABLATION STUDY

We conduct ablation experiments on the CALVIN ABC—D benchmark to assess the impact of
(a) structured pixel motion representation, (b) gripper view conditioning, and (c) the number of
diffusion steps (See Table 5).

(a) Pixel Motion, RGB Goal, and pretraining. We compare two variants against our default
setting: (i) RGB goal image conditioning instead of pixel motion; (ii) Only Action Expert w/o
pixel motion, and (iii) generating pixel motion with a denoising U-Net trained from scratch. As
shown in Table 5(a), pixel motion yields the best performance, highlighting its utility as a structured
and interpretable intermediate, and our method benefits a lot from the pretrained image generation
model, even though the model was not trained for pixel motion generation before.

(b) Gripper View Conditioning. We further ablate the effect of adding egocentric gripper-mounted
observation to Motion Director. Removing the gripper view leads to performance degradation (3.74
vs. 4.00), while prior methods such as VPP degrade further (3.58). These results confirm that the ad-
ditional viewpoint facilitates reasoning about occlusions and fine-grained hand-object interactions.

(c) Diffusion Steps of Motion Director. Motion Director module can capture meaningful motion
information even at 2 diffusion steps (3.88). Increasing the number of steps steadily improves per-
formance, peaking at 25 (4.00) and can’t gain more beyond that (e.g., 40 steps with 3.95).

5 CONCLUSION

In this work, we present a two-stage diffusion-based visuomotor framework for robot manipula-
tion, termed DAWN, which achieves state-of-the-art performance on CALVIN, MetaWorld, and
real-world benchmarks. Instead of using manifest visual information in RGB space, we use explicit
dense pixel motion representations as a structured interface between a latent diffusion Motion Di-
rector and a diffusion-based Action Expert. This design bridges hierarchical motion decomposition
and end-to-end agents while preserving interpretability and modularity. By instantiating both stages
with modern diffusion models and leveraging strong pre-trained vision language backbones, DAWN
delivers high data efficiency and robust transfer, indicating that much of the gap between multi-stage
tracking pipelines and VLA/latent-feature hierarchies stems not from the framework itself but from
underpowered high- and low-level components. We hope DAWN encourages re-examining struc-
tured intermediate representations as a practical path to interpretable, data-efficient robot control.
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Appendix

A TRAINING DETAILS

Training Details. We train all models on 4 NVIDIA A6000 GPUs. For Motion Director, we train
for 100k iterations with a per-GPU batch size of 16. For Action Expert, we train for 10k iterations
with a per-GPU batch size of 64. We use the AdamW optimizer with a learning rate of 1 x 107
Mixed precision training is used to reduce memory usage and improve throughput. All training is
implemented in PyTorch with the HuggingFace Diffusers and Transformers libraries.

B DATASET DETAILS

B.1 CALVIN

CALVIN is an open source simulated benchmark to learn long-horizon language-conditioned tasks,
which contains 4 different simulation environments-A, B, C, D. While each split (A-D) shares the
same robotic setup, variations in object placement, textures, lighting, and distractors ensure that
models cannot rely on memorization but must instead demonstrate robust visuomotor understanding.
The 34 manipulation tasks span a wide range of skills such as pushing, placing, rotating, toggling
switches, and opening drawers, all expressed through natural language instructions.

In our approach, we adopt a hierarchical inference strategy where Motion Director predicts a pixel
motion plan, and Action Expert executes this plan by directly applying 10 consecutive low-level
action steps before requesting a new pixel motion. This design reduces the computational overhead
of repeatedly invoking the diffusion-based planner, while ensuring that each high-level motion is
translated into a temporally coherent sequence of actions. Our two example rollouts are presented
in Figure A.1. These frame sequences show some intermediate steps’ observations from the static
camera view, and the pixel motion plans visualized with the observations, which align and guide the
action steps from a high-level guidance.

“go push the pink block right”

“pull the handle to open the drawer”

RGB

Pixel -y P
Motion =

Figure A.1: CALVIN rollout examples. Two example rollouts of DAWN in CALVIN environment. The first
row is the sequence of RGB images, and the second row is the visualization of the corresponding pixel motions
predicted by Motion Director.

B.2 DROID

DROID is a large-scale “in-the-wild” robot manipulation dataset featuring 76k real demonstration
trajectories across 564 varied scenes and 86 tasks. It provides over 350 hours of interaction data,
with diverse viewpoints, object types, and natural instruction annotations.

B.3 REALWORLD

We constructed a dataset specifically for fine-tuning and real-world evaluation. The experimental
platform consists of a 7-DoF xArm7 manipulator and two RGB cameras. An Intel RealSense D435
was positioned laterally to provide a third-person view of the workspace, while an Intel RealSense
D405 was mounted above the gripper to capture a close-up view of the end-effector and its interac-
tions with objects. Though both cameras are stereo cameras, we only use a single RGB view from



Table A.1: Comparison with VPP in Real world experiment..

Apple Avocado Banana Grape Kiwi Orange
Success  Wrong Obj. | Success  Wrong Obj. | Success  Wrong Obj. | Success  Wrong Obj. | Success  Wrong Obj. | Success  Wrong Obj.
VPP (Hu et al., 2024) 16—14 22 15—15 2—0 15—14 0—0 17—17 1—=0 15—15 2—0 16—14 0—0
DAWN * 19—19 0—0 20—19 0—0 17—16 0—0 1919 0—0 1716 22 18—16 0—0

each camera in all the experiments. This dual-camera setup enables complementary perspectives,
facilitating both scene-level and fine-grained observations.

Data was collected through a leader—follower teleoperation scheme, where a human operator con-
trolled a leader device to guide the motions of the xArm7 (follower). Each demonstration episode
was restricted to a single atomic task, such as lifting a fruit, transporting it, or placing it into a
basket. Episodes were initialized either from randomized joint configurations or from the terminal
state of the preceding task, ensuring diversity in initial conditions. To further increase variability and
promote generalization, we occasionally re-dropped and re-grasped objects within the same episode.

The resulting dataset comprises 1,000 episodes, with a minimum of 100 demonstrations allocated
to each distinct task. This distribution ensures both task balance and sufficient coverage for down-
stream fine-tuning. Overall, the dataset provides a structured yet diverse collection of manipulation
trajectories suitable for evaluating task-specific policies under realistic conditions.

C DAWN VARIANTS

In this section, we describe the DAWN variant reported as DAWN* in Table 4 (repeated here in
Table A.1). VPP (Hu et al., 2024) provides a strong pretrained checkpoint for a diffusion backbone
that is trained on large-scale robotic demonstration datasets. Since VPP does not perform at its
highest level when trained on less data (e.g. only our real world dataset), we adopt its pretrained
official checkpoint for the real world evaluations. To enable fair comparisons with this model, pre-
training on a similar scale of robotics demonstration data is beyond our compute capacity. Therein,
we adopt a variant of DAWN that can use the VPP pretrained checkpoint and we finetune it to gen-
erate intermediate pixel motion representations. Since VPP is originally trained for generating RGB
representations, we simply generate Pixel Motion representations in addition to RGB to benefit from
the pretraining. Both these features, RGB and Pixel Motion, are subsequently provided to the Ac-
tion Expert module. For fair comparison, we use the same Action Expert as VPP. Secondly, we
also limit the reverse diffusion iterations of Motion Director to 1 (instead of our default 25) for fair
comparison, since VPP follows the same setting.

These results (repeated here in Table A.1) from evaluation under identical settings establish how our
proposed structured pixel motion can further improve upon even a strong diffusion based approach
such as VPP.
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